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Abstract - This article shows an approach to identify speech in a given signal with moderate noise levels. It is 
based on the segmental structure of speech processes and has two advantages: It is trained exclusively from 
speech sounds and has a relatively low computational footprint at testing time. 
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1. INTRODUCTION 
 
 Detecting speech in their surroundings is 
considered an easy task by human listeners: We are 
still able to perceive the presence of speech even if 
its information is lost, for instance because of strong 
simultaneous noise or when an unknown language is 
spoken. In technical applications, this detection of a 
signal’s “speechiness” is useful for instance in 
multimedia databases, where the type of a signal is 
automatically determined for metadata generation 
and content-based indexing, or in front-ends to 
automatic speech recognition systems, where the 
acoustic environment is scanned for speakers to 
recognize. Similar requirements exist in hearing aids 
and ambient intelligence applications. 
 Early work in speech/non-speech signal 
classification was accomplished, e.g., by Hoyt and 
Wechsler [1]-[3], and, more specifically for 
speech/music discrimination, by Scheirer and Slaney 
[4]. This research and most later work used a general 
architecture of signal classifiers: The incoming 
signal is segmented into frames, discriminative 
features are extracted and finally classified. 
 Many features for speech detection and the more 
general problem of sound classification stem from 
the speech processing area, such as the 
representations of spectral envelope, mel-frequency 
cepstral coefficients (MFCC) [5] and perceptual 
linear prediction (PLP) coefficients [6], and time-
domain features, such as short-time energy and zero-
crossing rate. With the more recent developments in 
multimedia databases and multimedia content 
description standards like MPEG-7, new 
standardised feature sets have become increasingly 
important. In MPEG-7, these so-called descriptors 
are dedicated to capture the properties of more 
general sounds, but with some focus on speech and 
music. Signal classification on the basis of MPEG-7 
feature sets, which include, e.g., spectral envelope 
coefficients, spectral centroid, flatness and spread 
has been done, e.g., by Kim et al. [7] and Xiong et 
al. [8]. 
 More recent work on signal classification is that 
of Lu et al. [9], where a very good recognition rate is 

achieved using MFCC and a spectral flux feature 
[4], among others. Classification with support vector 
machines reportedly achieved a recognition rate 
beyond 99%. 
 Most work was achieved using static signal 
properties and their derivatives. Some alternative 
approaches use the explicit sequence structure of the 
signals to discriminate them. Recent work has been 
done by Ajmera et al. [10], who segment audio 
streams into speech and music using specific hidden 
Markov models conditioned on the segment length. 
An earlier approach introduced by Hoyt and 
Wechsler [1] uses the curviness of formant 
trajectories over a longer period to detect speech. 
Scheirer and Slaney’s 4Hz modulation energy 
feature [4] uses the rate of syllables; vowels in 
continuous speech exert a peak in short-time energy 
at an approximate rate of 4Hz.  
 The concurrently developed sequence model by 
this paper’s author [11] exploits the same syllabic 
properties but extends this by a classification of the 
signal segments. 
 This paper introduces a sequence heuristic that 
augments the one described in [11] by an improved 
classification algorithm. The idea is introduced in 
Section 2, and Section 3 proposes an algorithm 
implementation whose recognition results are 
outlined in Section 4. 
 
 
2. A SEQUENCE-BASED HEURISTIC 
 
 Speech is a process continuously varying in time, 
and one way to account for this non-stationarity is to 
consider speech a temporal sequence of an alphabet 
of states. The idea of the proposed speech detection 
algorithm is that non-stationary non-speech signals 
are very likely to generate sequences different from 
these found in speech when using the same alphabet, 
while stationary non-speech signals are trivial to 
identify. 
 The segments of speech considered here are 
phonemes, which in continuous speech are 
hierarchically combined to syllables, words, phrases 
and so on. The most important property for 



sequence-based detection is the syllabic structure: 
Continuous speech alternates between vowels as the 
central parts of syllables with high frame energy and 
phonemes with different levels of lower frame 
energy and different spectral properties. If a 
detection model is based on phonemes, consequently 
vowels are most useful to be incorporated into a 
sequence model: A classifier could just look for 
vowel-like segments in certain temporal distances. 
Scheirer and Slaney [4] in principle adopted this in 
their 4Hz modulation energy measure. 
 An approach beyond this vowel-modeling is to 
partition the feature space into a more complete set 
of phoneme classes and classify lower-energy 
segments, as well. Such a partition motivated by 
spectral similarities is the basis for the classification 
algorithm in the next section. 
 
 
3. CLASSIFICATION ALGORITHM 
 
 The experimental realisation of the speech 
sequence heuristic comprises the three steps: (1) 
frame-level feature extraction, (2) sequence 
generation using segmentation and classification, 
and (3) the heuristic sequence model test (Fig. 1). 
 

 
Fig. 1. The architecture of the speech detection 
approach. 
 
 In the initial feature extraction step, the signal is 
pre-emphasised and windowed into frames of 23ms 
duration with a half-frame overlap [5]. As 
classification features, perceptual linear prediction 
cepstral (PLPC) coefficients of order 5 have been 
chosen because of good speaker independence [6], 
compact and de-correlated representation of the 
signal and computational efficiency. 
 Next, the frame-based signal must be 
transformed into a segment-based sequence with a 
class-label assigned to each segment. This is done by 
combining points of maximal acoustic change 
(acoustic landmarks) with the boundaries of classes, 
using segmentation and classification information. 
 As a basis for the detection of acoustic 
landmarks, a Euclidean distance measure between 
the cepstral coefficients, 

ic
r , of frames with a certain 

time difference, 
2|||| kiii ccd −−= rr , is employed. In the 

present case, the time difference is set to approx. 
11ms (i.e., k = 1). The peaks of 

id can be interpreted 

as points where the signal spectrum exhibits more 

significant changes compared to the vicinity, such as 
phoneme boundaries or instants of rapid spectral 
change in interferences. Measures like id  
commonly produce a great number of peaks which 
are not easily interpretable. These insertion errors 
can be reduced by smoothing: The frame-to-frame 
Euclidean distance is convolved with a "Mexican 
hat" function, the second derivative of a Gaussian, 
with standard deviation set to 10 ms. The peaks of 
the resulting acoustic change function are interpreted 
as acoustic landmarks and used for segmenting the 
waveform if they exceed a threshold (see Fig. 2). 
 

 
Fig. 2. Segmentation/classification of the beginning 
of the utterance “Don’t ask me to carry ... ” by a 
female talker. The middle plot shows the original 
frame-to-frame Euclidean distance (dotted) as well 
as the change function where the acoustic landmarks 
are derived from. 
 
 Classification of each frame is performed with a 
support vector machine (SVM) [12] using the one-
against-all multi-classification approach and an RBF 
kernel. SVMs are able to discriminate classes via 
topologically complex hyperplanes and are 
computationally efficient at testing time. The target 
classes are {vowel, sonorant-consonant, fricative, 
silence}, i.e., classes of spectrally similar phonemes 
and a null class. Because the transient character of 
plosives cannot be handled reliably, separate rules 
for this class are introduced. 
 To generate a sequence of segment data, the 
information of the acoustic landmarks and class 
labels is combined using the following method: 
•  Find class regions, which are intervals in the 

signal during which the class-label does not 
change and which are longer than 50ms. 

•  Find acoustic landmarks within the class region 
and divide the class region into segments at 
each detected boundary. 

•  Find class regions which are shorter than 25ms. 
For each of these transient regions: 

•  If (1) the change function across the boundaries 
of the region is lower than a threshold and if (2) 
their surrounding regions belong to the same 
class: Merge short regions with surrounding 
regions. Otherwise collect short regions in a 



class of transient segments that do not 
contribute to the estimation of sequence 
statistics. 

This procedure generates a value triple for each 
segment containing phoneme class, duration and 
average energy.  
 Before the signal is passed on to the sequence 
model classifier, an initial test is performed that 
classifies observation intervals as non-speech which 
(1) do not include vowel segments or (2) include 
only segments of one class and/or silence. This 
effectively rejects stationary signals and non-
stationary signals with non-vowel spectra. 
 
3.1. Sequence Classification 
 
 The sequence model classifier as the final part of 
the algorithm is designed to collect several scores 
for the segments within an observation interval that 
correspond to discriminative properties of speech, 
namely segment durations, vowel/consonant energy 
ratio and vowel-vowel center separation time.  
 The first score is determined from the duration 

nd  of each segment and its class 
nω , 

)|()(dur nndSns ω= , which is a lookup in a class-

dependent duration histogram. The duration score is 
accumulated by a weighted average of the segment- 
duration scores within the observation interval. The 
weighting is proportional to the segment durations 
and additionally emphasises the importance of 
vowel segments by a constant α : 
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 The result 1s  can be imagined as a frame-based 
average measure over the observation interval 
(i,j,k<m) which is preferable to segment-based 
averages in order to avoid a bias towards short 
segments. The two other scores are computed for the 
entire duration of the observation interval: 
•  The scores of the average duration between the 

center points of adjacent segments, which are 
classified as vowels and exceed a duration of 
30ms, )( vv2 dSs = . If only one vowel segment is 

contained in the sample, the vowel-vowel 
separation does not contribute to the score, and 
the false alarm probability is increased. In order 
to use the same decision threshold as in the 
normal case, the score is set to the average 
vowel-vowel separation score obtained for 
speech, i.e., }E{ 22 ss = . 

•  The probability of the vowel/consonant energy 
ratio averaged over the observation interval, 

)( consvow,3 rPs = , which is modeled Gaussian.  

In the next processing step, the three partial scores 
for the observation interval are combined to a total 

score that is defined by a gamma operator, 
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 The weighting factor γ  controls the balance 
between AND and OR behavior of the gamma 
operator and can be used to adjust the false-alarm 
robustness. With the gamma operator, a constraint 

]1,0[∈is  must be ensured. 

 The actual decision is made by thresholding the 
total score, )(ms . The index m refers to the number 
of the last full segment recognised in the observation 
interval. The size of the observation interval must be 
chosen according to two criteria: (1) the time 
allowed for a decision, and (2) the confidence of the 
decision. It can be increased with an increasing 
number of available segments. Then the confidence 
of decision is low at the beginning of an utterance 
and increases when more and more frames/segments 
are input to the system. In the current version, the 
observation interval reaches across the entire input 
file. 
 
3.2. Training 
 
 Training is performed in two stages. First, the 
SVM phoneme-class classifier is trained with 
labeled speech samples from different talkers. 
According to the quality of the training labels, the 
training error robustness of the SVM is set. 
Subsequently, the distributions for the sequence 
model can be estimated by unsupervised training, 
i.e., the training relies on the behavior of the 
segmentation/classification stage. The statistical 
models for the phoneme-dependent durations are 
trained non-parametrically, i.e., histograms for the 
class durations are collected and smoothed. For the 
vowel/consonant energy ratio, a simple estimation of 
the Gaussian mean and variance is performed. As a 
final step, the weights α  and γ  are empirically 
chosen at the end of the training phase. 
 
 
4. EVALUATION 
 
 Training was done on 4500 frames from 40 
different talkers from the TIMIT corpus for the 
classifier, durational statistics and energy ratios. 
Plosive sounds were left out (they tended to be 
classified as sonorants and fricatives; cf. Fig. 2, e.g., 
frames 13–15 and 47–50). The durational 
distributions measured for the three remaining 
phoneme classes are shown in Fig. 3 and show 
shortened vowel durations due to some 
misclassifications at boundaries between vowels and 
sonorant consonants. For the duration score and the 
final class decision, the vowel weighting constant 
was set to 2=α  and the AND/OR weight was set to 

7.0=γ , emphasising OR behavior. The scores have 
in addition been observed separately, see Fig. 4.  



 
Fig. 3. Normalized duration histograms for the three 
phoneme classes (top) and vowel-vowel separation 
(bottom) used by the classifier (1 frame = 11ms). 
 

 
Fig. 4. Histograms of the two scores duration and 
vowel-vowel separation. 
 
 The algorithm has proven the general ability to 
identify the speech samples with a set of 20 speech 
samples and 30 structured nonspeech samples 
including music and crowd noise. With the optimal 
thresholding and weighting parameters, the 
recognition rate was >90% with the complete files as 
observation interval (2–5sec). Speech samples are 
classified generally reliably with the durational 
values for read continuous speech. Harmonic non-
speech sounds like music were often classified 
constantly as vowels or sonorants and thus could be 
rejected. Rejection of short noise sounds like 
keyboard noise or crackling fire were classified as 
transients and thus were rejected with the transient / 
short segments rule that excludes the sounds from 
classification. 
 
 
5. CONCLUSION 
 
 A speech detection approach has been proposed 
that classifies speech and non-speech signals using a 
combination of heuristics based on the syllabic 
structure of speech. The model was developed 
primarily under the working assumption of non-
simultaneous noise, but by appropriate feature 
selection (e.g., harmonics in vowels), some 
robustness to noise can be expected. Compared to 
HMM-based sequence algorithms, no expensive 
model decoding procedure is necessary. 
 Future research should concentrate on the 
behaviour of the algorithm with limited observation 
intervals, variable speaking rates and the possibility 

to segment an audio stream into speech and non-
speech regions. Further, explicit handling of plosive 
phonemes / transient non-speech sounds can 
improve the model. 
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