
A Generic Approach to Topic Models

Gregor Heinrich

Fraunhofer IGD + University of Leipzig
Darmstadt, Germany

heinrich@igd.fraunhofer.de

Abstract. This article contributes a generic model of topic models. To define the
problem space, general characteristics for this class of models are derived, which
give rise to a representation of topic models as “mixture networks”, a domain-
specific compact alternative to Bayesian networks. Besides illustrating the inter-
connection of mixtures in topic models, the benefit of this representation is its
straight-forward mapping to inference equations and algorithms, which is shown
with the derivation and implementation of a generic Gibbs sampling algorithm.

1 Introduction

Mixture models [1] are a powerful tool to model complex probabilistic distributions
by convex sums of component densities, p(x) =

∑
k p(z=k)p(x|ϑk), where z is an index

variable that indicates which component k the observation x originates from. Among the
large class of such models, mixture models with discrete component densities p(x|ϑk)
are of particular interest because in this case the component densities can serve as
weighting functions for other mixtures, which themselves can have again discrete or
non-discrete component densities. This fact makes it possible to construct models that
consist of cascades or even networks of coupled discrete mixtures as generative struc-
ture underlying one or more observable mixtures with arbitrary (e.g., discrete or Gaus-
sian) component densities.

Such a coupling of mixtures can be considered a defining characteristic of topic
models, a class of probabilistic models that has become a central subject of research in
text mining, computer vision, bioinformatics and other fields. Following the idea pro-
posed by the seminal work on latent Dirichlet allocation (LDA [2]), topic models exploit
the conjugacy of Dirichlet and multinomial/discrete distributions to learn discrete latent
variables from discrete co-occurrence data (e.g., [3,4,5]) or from the co-occurrence of
discrete and continuous features (e.g., [6]). Via the interrelation of the latent variables
across different mixture levels, structures assumed in the data can be accounted for in
specialised topic models, which renders the topic model approach a powerful and flex-
ible framework.

However, the published work on topic models only defines this framework implic-
itly; authors tend to analyse and derive probabilistic properties and inference algorithms
on a model-specific basis, typically using results from particular prior work. Although
on the other hand frameworks for automatic inference in (more general) Bayesian net-
works exist that are in principle capable of handling topic models as special cases (e.g.,
WinBUGS [7], HBC [8], AutoBayes [9], or VIBES [10]), the generality of this software



2

makes it difficult (1) to gain insights from the result of the automatic inference deriva-
tion process, and (2) to make performance improvements that may be possible for more
restricted model structures, which is desirable especially because topic models have
serious scalability issues. Such improvements may be based on the recent advances in
massively parallel hardware, along with general-purpose programming platforms like
OpenCL [11], or heterogeneous computing architectures including specialised FPGA
processor designs, along with programming interfaces like the hArtes toolchain [12].
For such high-performance computing architectures, a generic approach to topic model
inference may permit to reuse highly optimised kernels across models and therefore
allow to focus optimisation effort.

Apart from theoretical interest, these practical considerations motivate a closer look
on topic models with the intent to characterise their properties in a generic manner.
Specifically, we generalise the probabilistic properties of topic models in Sec. 2. Moti-
vated by this general characterisation, we propose a specialised representation of topic
models in Sec. 3: mixture networks. Subsequently, as a basis for actual implementa-
tions we present a generic approach to inference in mixture networks in Sec. 4 for the
case of Gibbs sampling, which has been implemented as a generic Gibbs sampling tool
described in Sec. 5. We finish with conclusions and future work directions in Sec. 6.

2 Generalising topic models

In this section, we present a generic characterisation to topic models. As a basis for the
following derivations, consider an arbitrary Bayesian network (BN [13]) with variables
Un ∈ U. Its likelihood can be generally formulated as:

p(U) =
∏

n

p(Un | pa(Un)) (1)

where the operator pa(Un) refers to the set of parents of some BN node that belongs to
variable Un.

Characteristics. As has been outlined in the Introduction, the first notable character-
istic of topic models is their use of the conjugate Dirichlet and multinomial/discrete
distributions. Focussing on discrete observations, such models can be structured en-
tirely into “mixture levels”, each of which consists of a set of multinomial components
~ϑk ∈ Θ , {~ϑk}Kk=1 that are themselves drawn from Dirichlet priors with some set of
hyperparameters ~α j ∈ A , {~α j}Jj=1. Based on one or more discrete values from parent
nodes in the BN, a component k among the multinomial mixture is chosen and a dis-
crete value xi sampled from it, which is part of the observation sequence X , {xi}i∈I

with index sequence I. The corresponding generative process for one mixture level can
be summarised as:

xi | ~ϑk, k=g(↑xi, i) ∼ Mult(xi|Θ, ↑xi)

~ϑk | ~α j, j= f (↑X) ∼ Dir(~ϑk |A, ↑X) (2)

where the component index k is some function of the incoming discrete values or their
indices that maps to components of the local mixture level. For this, the parent variable
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operator ↑xi is introduced that collects all parent variables of xi (excluding parameters:
↑X = pa(X)\Θ), and the component selection function can consequently be expressed
as k = g(↑xi, i). Hyperparameter indices j can be chosen either to be global for all k,
i.e., j ≡ 1, or similarly to the component indices, assigned to a group of components
with some grouping function j = f (↑X). This grouping can be used to model clustering
among components (see, e.g., [14,4]).

The generative process in Eq. 2 reveals the second characteristic of topic models:
Mixture levels are solely connected via discrete parent variables (↑X), which ensures a
simple form of the joint likelihood of the model.1 Based on Eq. 1, the complete topic
model can be constructed from the mixture levels ` ∈ L, yielding the likelihood:

p(X, Θ|A) =
∏

`∈L

p(X`, Θ` | A`; ↑X`) (3)

=
∏

`∈L


∏

i∈I

Mult(xi |Θ, ↑xi)
K∏

k=1

Dir(~ϑk | A, ↑X)


[`]

(4)

where for simplicity we mark up variables specific to a level with a superscript `, in
brackets [·][`] for all their contents or for entire equations in the text. Without this mark-
up, symbols are assumed model-wide sets of variables X, parameters Θ, hyperparame-
ters A, etc. Eq. 4 shows the structure of the joint likelihood common for topic models:
Multinomial observations factorise over the sequence of tokens generated by the model,
and the Dirichlet priors factorise between the components.

Mixture level likelihood. Due to the conjugacy of the Dirichlet and multinomial/discrete
distributions, the inner terms of Eq. 4 can be simplified further after a transformation
from tokens with index i ∈ I (part of a sequence) to counts over component dimensions
with index over t ∈ [1,T ] (part of a “vocabulary”), each specific to a mixture level `.
For every `, the following holds for the total count of co-occurrences between outcomes
xi=t and mixture components k=g(↑xi, i) responsible for them:

nk,t =
∑

i∈I

δ(k − g(↑xi, i)) δ(t − xi) (5)

where δ(x) is the delta function, δ(x) = {1 if x=0, 0 otherwise}. Using these counts, the
likelihood of one mixture level becomes:

p(X`, Θ` | A`; ↑X`) =


K∏

k=1

1
∆(~α j)

T∏

t=1

ϑ
nk,t+α j,t−1
k,t


[`]

(6)

where the product over t in Eq. 6 is the integrand of a Dirichlet integral and ∆(~α) is the
partition function of the Dirichlet distribution, a T -dimensional generalisation of the
beta function:

∆(~a) ,
∏T

t=1 Γ(at)

Γ(
∑T

t=1 at)
. (7)

1 With the hyperparameters dependent on j = f (·), formally there is an additional dependency
between mixture levels, but this is dropped by assuming the set A known; common EM-type
inference methods estimate hyperparameters independently inside their M-step; see Sec. 4.
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Mixture level variants. The topic model framework is not restricted to the Dirichlet–
multinomial type of mixture level that forms its core. Several possibilities exist to ex-
tend the framework and plug as levels into Eq. 3:

– Symmetric hyperparameters are a common variant to the standard vectors, see, e.g.,
the original LDA model [2]. The Dirichlet partition function simplifies to ∆T (a) ,
Γ(a)T /Γ(Ta).

– Observed parameters introduce known mixture proportions or fixed observations
like labels (see, e.g., the author–topic model [3]), which leads to p(X|Θ; ↑ X) =∏

i Mult(xi|Θ, ↑xi) =
∏

k,t ϑ
nk,t

k,t for a level, i.e., the Dirichlet vanishes in Eq. 3.
– Infinite mixtures allow model adaptation to data dimensionalities and typically use

Dirichlet process (DP) mixtures or generalisations [15]. Mixture interrelations in
topic models are handled typically using hierarichcal DPs [16]. Especially the stick-
breaking representation of the DP and its finite approximations [17,18] promise to
preserve a high similarity to finite-dimensional models.

– Non-Dirichlet priors like logistic–normal allow a more flexible combination of top-
ics in particular mixture levels, as in the correlated topic model [19].

– Non-discrete observation components use, e.g., Gaussian distributions in the final
mixture level (e.g., in Corr-LDA [6]). Parameters are preferrably drawn from con-
jugate priors to simplify inference. The likelihood of a non-discrete mixture level
is p(X̃, Θ̃|Ã; ↑X̃) =

∏
i h(x̃i, Θ̃| ↑x̃i)

∏
k g(ϑ̃k |α̃ j) with component distribution h and

prior g.

To keep this paper focussed, we restrict ourselves to the first two variants mentioned,
which already cover a vast body of models in the literature.

3 Mixture networks

The dependency structure characteristic for topic models shown in Eq. 3 gives rise to
the idea of a specialised graphical representation. In addition to the fact that in BN
diagrams of more complex topic models, interrelations between mixtures are easily
hidden in complex network structures, the introduction of a domain-specific graphical
representation of topic models may help simplify derivation of their likelihood structure
and inference equations.

To obtain such a representation, we use the two characteristics discussed in Sec. 2:
Dirichlet–multinomial mixture levels and the connections between levels via discrete
variables, which can be seen as nodes and edges in a new network structure. This leads
to a representation of topic models as “mixture networks”.

3.1 Definition

A mixture network (MN) is defined as a digraph G(N ,E) that consists of (1) a set of
nodes,N , where (a) an inner node represents a mixture level as described in Sec. 2, i.e.,
a sampling operation from a mixture component and (b) a terminal node represents an
observable (discrete) value, as well as (2) a set of directed edges, E : N ×N , where an
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m∈[1,M]

k∈[1,K] n∈[1,Nm]

~ϕkβ wm,n

zm,nα ~ϑx

xm,n

x∈[1,A]

~am

(a)

~ϕk | β
[V]

wm,n

zm,n[K]

m
[M]

xm,n[A]

~am

~ϑx | α

(b)

Fig. 1. The author–topic model, (a) Bayesian network and (b) mixture network.

edge propagates a discrete value from its parent node to its child node. The child node
then uses the value to choose one of its components.

Graphical notation. A graphical notation for mixture networks is proposed in Fig.
1(b) via the example of the author–topic model (ATM [3]), which models the topic as-
sociation with authors with three mixture levels and whose BN is shown in Fig. 1(a).
Opposed to BNs that visualise dependencies between random variables and express
the repetitions of data points (plate notation), MNs focus on the interrelations between
discrete mixtures (in the example: document–author, ~am, author–topic, ~ϑx|α, and topic–
word, ~ϕk |β, distributions), along with component numbers and dimensionalities ([M],
[K] and [V]). The frequency of sampling a particular variable is encoded in subscripts
(in the example: ~ϑx, ~ϕk and wm,n referring to author-, topic- and word-wise sampling
schedules, respectively). Note that the top (inner) node does not indicate a hyperparam-
eter because of its observed parameter (see mixture level variants in Sec. 2).

3.2 Example models

In illustrate the applicability of the MN representation, the mixture network diagrams
of some topic models from the literature are drawn in Fig. 2. Fig. 2(a) shows the MN
of the model of latent Dirichlet allocation (LDA [2]), which served as a design paragon
to all other models. It has two mixture levels: a document–topic mixture ~ϑm|α and a
topic–term mixture ~ϕk |β. The extension of this model gives illustrative insight into the
organisation of mixtures to account for logical and semantic structure assumed in the
data. A simple extension to the plain LDA model is the author–topic model shown in
Fig. 2(b) as explained above.
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[|t|]

[3]
[|T |+|t|+1]

zT
m,n=T

(e)

Fig. 2. Mixture networks of example models from the literature: (a) latent Dirichlet
allocation, (b) author–topic model, (c) latent Dirichlet co-clustering model, (d) 4-level
pachinko allocation, (e) hierarchical pachinko allocation (hPAM1).

Co-clustering. The model of latent Dirichlet co-clustering (LDCC [14]) in Fig. 2(c)
uses aggregation to infer an additional logical layer of topics from the data: For each
section s, a topic distribution ~ϑm,s can be inferred, and document topic distributions ~ϕm

index word-topics zm,s,n indirectly via section topics ym,s, allowing a finer-grained han-
dling of topic structure across documents with component selection function g(↑zm,s,n,
(m, s, n)) = (m, s). Further, segment topics ~ϑm,s are coupled across documents via the
topic-hyperparameters ~αy with component group function f (↑z) = k.

Pachinko allocation. Another multi-level MN is the class of pachinko allocation mod-
els (PAM), of which the four-level variant as described in [4] is depicted in Fig. 2(d).
For each word, a path through a topic hierarchy is sampled consisting of the indicators
(z1, z2, z3) where z1=1 provides the root of the tree, associated with LDA-type document
topics ~ϑr

m, and based on its sample, a document- and topic-dependent level ~ϑm,x is sam-
pled (g(↑z3

m,n, (m, n)) = (m, x)), finally indexing word-topics ~ϑy. Similar to the LDCC
model, component grouping is used: f (↑z3) = x.

Hierarchical pachinko allocation [5] (hPAM) as shown in Fig. 2(e) is an example for
a more complex model that allows a hierarchy of topic–term distributions: As in PAM,
the topic hierarchy consists of document-specific root- and super- as well as global sub-
topics, but each node k in the hierarchy is associated with a topic–term distribution ~ϕk,
and for each word wm,n, a complete topic path (root–super–sub) is sampled along with
a level `m,n from ~ζT,t specific to super- and sub-topics (hPAM1 in [5]). The topic sample
on level `m,n selects from the set k = {1, 1 + T, 1 + |T | + t} the component ~ϕk that finally
generates the word.
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Although with a different goal in mind, the concept of pachinko allocation models
is closely related to the approach pursued with mixture networks because it allows to
connect different levels of mixtures with great flexibility. In fact, MNs can be considered
a generalisation of PAMs that allows free interconnection of nodes in general DAG
structures with different types of mixture levels (observed, unobserved parameters) and
with observable variables (edges or parameters) at arbitrary points in the network. By
appropriate choice of index transformations g`(↑x`i , i`), even the component-dependent
subtrees mentioned as the most flexible version of the PAM concept [4] may be realised
with mixture networks.

4 Inference in mixture networks

Inference in the context of mixture networks refers to finding the parameters Θ and
hyperparameters A given the observations. With the model variables X divided into
sets of visible (observed) and latent (hidden) variables, X = {V,H}, this is typically a
two-part process of (1) Bayesian inference for the posterior distribution,

p(H, Θ|V, A) =
p(V,H, Θ|A)

p(V |A)
, (8)

and (2) estimation of the hyperparameters, for which ML or MAP estimators are com-
monly sufficient because of the simpler search space.

As in many latent-variable models, determining the posterior Eq. 8 is generally in-
tractable in mixture networks because of excessive dependencies between the latent
variables H and parameters Θ in the marginal likelihood for the observations V in the
denominator, p(V |A) =

∑
H

∫
p(V,H, Θ|A) dΘ. To circumvent this intractability, approx-

imate inference methods have been proposed, for topic models including mean-field
variational Bayes [2], collapsed variational Bayes [20], expectation propagation [21]
and collapsed Gibbs sampling [22].

For our purposes, a method is needed that has feasible complexity with reasonable
accuracy even when it comes to modelling dependencies between variables. The full
factorisation of variational mean-field distributions may be adverse for model fitting
[23], and structured approaches become complicated quickly [10]. Expectation propa-
gation on the other side has not been commonly used with more complex topic models.
Thus, Gibbs sampling appears to be the most straight-forward method for a formulation
of approximate inference for mixture networks.

4.1 Gibbs sampling

Gibbs sampling [24] is an approximative inference method particularly suited for mod-
els where the marginals of the posterior can be expressed in closed form, in particu-
lar for high-dimensional discrete models. As a Markov-chain Monte Carlo (MCMC)
method, Gibbs sampling uses a Markov chain that upon convergence approximately
generates samples according to the posterior distribution. By sampling one dimension
of the posterior at a time, Gibbs sampling avoids computationally complex Metropolis-
Hastings acceptance calculations. One step in the Gibbs sampling inference approach
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thus corresponds to sampling dependent hidden variables hi for each data token vi from
the full conditional distribution, hi ∼ p(hi|H¬i,V, Θ, A) , where ·¬i refers to the complete
set of tokens except i. Analogously, ~ϑk must be sampled in such an approach [25].

With topic models, it has been shown, however, that collapsed approaches to Gibbs
sampling, i.e., those that integrate out parameters Θ [26], lead to particularly good
convergence behaviour [22] (which is attributed to the high independence of the re-
maining hidden variables). Therefore, the posterior considered for Gibbs sampling is
p(H|V, A) =

∫
p(H, Θ|V, A) dΘ. The Markov state of the Gibbs sampler then reduces to

H, and the resulting mixture network inference approach can be considered a form of
stochastic EM algorithm [27] that trains the latent variables H in its E-step and hyper-
parameters A in its M-step.

To sample from posteriors of collapsed MNs, for each independent latent variable
H` (generic variables, complete sequence: upper case) with tokens h`i ∈ H` , {h`i′ }i′∈I`

(tokens: lower case; convention: h`i ≡ h`i` unless otherwise noted), a separate full condi-
tional distribution p(h`i |H`

¬i,H
¬`,V, A) must be formulated for each token h`i ∈ H` with

·¬` used analogous to ·¬i. Typically, however, several hidden variables are dependent
and need to be drawn as a block. Therefore, with dependency groups denoted by Hd

with H` ⊆ Hd ⊆ H as sequences of groups of dependent tokens hd
i , the full condition-

als sought are: p(hd
i |Hd

¬i,H
¬d,V, A) for each group d and each token i = id. Remember

that subscripts refer to sequence indices and superscripts to levels. Further note that
hd

i is a configuration of hidden variables that corresponds to a unique combination of
components k` and outputs t` of the mixture levels involved.

Derivation. To find the full conditional distributions, we start from the joint likelihood,
Eq. 3, and for a collapsed approach integrate out its parameters via Dirichlet integrals:

p(V,H|A) =
∏

`∈L


∫ K∏

k=1

1
∆(~α j)

T∏

t=1

ϑ
nk,t+α j,t−1
k,t dΘ


[`]

=
∏

`∈L


K∏

k=1

∆(~nk + ~α j)
∆(~α j)


[`]

(9)

where the level-specific ~nk are vectors of co-occurrence counts nk,t.
This equation shows that the joint likelihood of the model variables is a product of

ratios of Dirichlet partition functions for each component on each individual mixture
level in the model. Interestingly, using the identity Γ(a+n) = Γ(a)

∏n−1
c=0(a+c) with real

a > 0 and integer n ≥ 0, we obtain a ratio of finite product sequences:

∆(~a + ~n)
∆(~a)

=

∏T
t=1

∏nt−1
c=0 (at + c)

∏[
∑

t nt]−1
c=0 ([

∑T
t=1 at] + c)

, (10)

which for a unit difference in a single element u, ∆(~a+δ(t−u))/∆(~a), reduces to au/
∑

t at.
Note that with Eq. 10, we can alternatively expand Eq. 9 into products without any
special functions, which comes at the cost of obtaining denominator terms in Eq. 9
specific to components k.

The next step to obtain full conditionals is to determine dependent edges Hd ⊆ H:
Analogous to the “Bayes ball” algorithm in Bayesian networks, in MNs we can identify
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dependent hidden edges by finding subgraphs that extend through nodes whose compo-
nent selection function g(↑xi, i) contains the respective hidden edges. In the examples
given in Sec. 2, ATM, PAM and hPAM models have dependent edges; LDCC does not
because the hidden variables are connected via hyperparameters (assumed given in the
full conditional). Further, edges of nodes adjacent to subgraph Hd but independent of
Hd are collected in a set S d ⊂ {V,H} with token sets sd

i . We use the notation ·¬s to
denote the exclusion of Sd. With these definitions, full conditional distributions can be
derived generically by applying the chain rule:

p(hd
i |Hd

¬i,H
¬d,V, A) =

p(hd
i , s

d
i |Hd

¬i, S
d
¬i,H

¬d,¬s,V¬s, A)

p(sd
i |Hd

¬i, S
d
¬i,H

¬d,¬s,V¬s, A)

∝ p(hd
i , s

d
i |Hd

¬i, S
d
¬i,H

¬d,¬s,V¬s, A)

=
p(H,V |A)

p(Hd
¬i, S

d
¬i,H

¬d,¬s,V¬s|A)

=
∏

`∈{Hd ,S d}


K∏

k=1

∆(~nk + ~α j)
∆(~nk,¬id + ~α j)


[`]

. (11)

Generic full conditionals. In Eq. 11, all terms except those with a count difference
between numerator and denominator cancel out. The remainder of terms can be simpli-
fied by applying Eq. 10 with ~a = ~n`

k` ,¬id
+ ~α`j, and the resulting full conditional becomes

a product of the following form if all mixture levels ∈ {Hd, S d} exclude only a single
token with ¬id:

p(hd
i |Hd

¬i,H
¬d,V, A) ∝

∏

`∈{Hd ,S d}


nk,t,¬id + α j,t

∑T
t=1 nk,t,¬id + α j,t


[`]

. (12)

The factors in Eq. 12 can be interpreted as posterior means of Dirichlet distributions
with hyperparameters ~α j and observation counts ~nk,¬id ,

〈
Dir(·|~nk,¬id + ~α j)

〉
on level `.

Although this form of full conditional factors is prevalent in a majority of topic models,
with the scope of models considered in this paper alternative forms are possible:

– If [g(↑ xi, i)][`] contains no hidden edges, the denominator can be omitted (e.g.,
nodes with m as only component index).

– If one index id at a mixture level input aggregates a whole sequence of i` at its
output, ¬id corresponds to more than one token in the factor denominator in Eq. 11
(e.g., in LDCC, section topics ym,s aggregate word topic sequences {zm,s,n}n), which
yields a factor analogous to Eq. 10:



∏T
t=1

∏nk,t−1
c=0 (c + α j,t)

∏[
∑T

t=1 nk,t]−1
c=0 (c +

∑T
t=1 α j,t)



[`]

. (13)

– Finally, mixture levels with observed parameters have components ~ϑk as factors. In
this case, few non-zero elements in ~ϑk support sparse representations, while sym-
metric non-zero values cancel out.
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4.2 Parameter estimation

Generally, estimation of parameters and hyperparameters is part an M-step dual to the
Gibbs E-step in a stochastic EM procedure. It can be performed on a per-node basis in
mixture networks.

Hyperparameters. In many topic models, hyperparameters are of decisive importance,
e.g., to couple component groups or to model data dispersion. As there is no closed-form
solution for estimation of Dirichlet parameters from count data, iterative or sampling-
based approaches are commonly employed. Extending results from [28] yields the fol-
lowing fixed-point iterations for node-specific standard and symmetric Dirichlet distri-
butions that result in maximum likelihood estimates:

α j,t ← α j,t

(∑
{k: f (k)= j}Ψ(nk,t + α j,t)

)
− K jΨ(α j,t)

[∑
{k: f (k)= j}Ψ(

∑T
t=1 nk,t + α j,t)

]
− K jΨ(

∑T
t=1 α j,t)

, (14)

α← α

(∑K
k=1

∑T
t=1 Ψ(nk,t + α)

)
− KTΨ(α)

T
[(∑K

k=1 Ψ([
∑T

t=1 nk,t] + Tα)
)
− KΨ(Tα)

] . (15)

where Ψ(x) = d/dx log Γ(x) is the digamma function and level indicators ` are omitted.
For the case j . 1 we use f (↑X) = f (k) for notational simplicity. Each α j,t then is
estimated from K j components for each of the J component groups. Estimators are
initialised with a coarse-grained heuristic or a previous estimate and converge within
few iterations.

Component parameters. Estimation of component parameters Θ is possible directly
from the statistics of the collapsed state H and estimated hyperparameters A. Using the
posterior mean of Dirichlet distributions given obervation counts ~nk for each level `,
Dir(~ϑk |~α j + ~nk) =

∏
i Mult(xi|~ϑk) · Dir(~ϑk |~α j), leads to the point estimate:

ϑk,t =
nk,t + α j,t∑T

t=1 nk,t + α j,t
(16)

where α j,t ≡ α for the symmetric case. Usually several samples H(r), r ∈ [1,R] are taken
from the stationary Markov chain with a sampling lag in between to ensure decorrela-
tion. Finally parameters are averaged: ~ϑk ≈ R−1 ∑

r
~ϑ (r)

k .

4.3 Predictive inference

In many applications, it is necessary to predict the topics of some query data set V ′

given the modelM trained on the observations V . Regarding the information required
to represent the modelM, two different types of node can be distinguished:

– Topic nodes, ` ∈ L∗, represent mixtures whose components are not specific to doc-
uments, i.e., g(↑xi, i) ≡ g(↑xi), andM contains their parameters Θ∗ = {Θ`}`∈L∗ ,

– Sequence nodes, ` ∈ L′, represent mixtures specific to documents, andM contains
their hyperparameters A′ = {A`}`∈L′ that allow to find parameters Θ′ = {Θ`}`∈L′ .
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Fig. 3. Mixture network Gibbs sampler development workflow.

Thus we can defineM , {Θ∗, A′}, and finding the association of unseen data V ′ with a
state H′ can be achieved using Gibbs sampling with a predictive full conditional anal-
ogous to Eq. 11, only that now it is possible (1) to treat parameters of topic nodes Θ∗

as observed and (2) to restrict sampling to the query state H′ without M-step updates,
which both accelerates convergence of H′ compared to H:

p(h′di |H′d¬i,H
′¬d,V ′,M) ∝

∏

`∈{S ∗d ,H∗d}

[
ϑk,t

][`] ·
∏

`∈{S ′d ,H′d}


K∏

k=1

∆(~nk + ~α j)
∆(~nk,¬id + ~α j)


[`]

. (17)

With this equation, all findings on generic full conditionals that were derived from the
analogous Eq. 11 can be reused, including Eqs. 12 and 13. Parameters can be estimated
again using Eq. 16.

5 Implementation

The coherence of Eqs. 12–17 across models leads to the conclusion that Gibbs sam-
pler implementations can be achieved based on a small number of computation kernels.
Few reusable kernels are desirable when targeting architectures that require high opti-
misation effort. In this section, a proof-of-concept implementation of the MN approach
is outlined that, although it targets a CPU-based architecture, may be a basis for topic
model implementation on massively parallel and FPGA-based architectures.

5.1 Generic Gibbs samplers

The implementation of MN Gibbs samplers is based on a multi-stage workflow that
allows to construct software modules with increasing levels of optimisation. This is
intended to keep the interface for the researcher simple while retaining flexibility with
respect to target architectures. An overview of the workflow is given in Fig. 3.

The central block in this process is the Java-based mixture network code generator,
which is fed with a simple text script of a given MN (for example that shown in Fig. 4)
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data: # input data

w[m,n] : M * N[m] -> V # word tokens (vocabulary size V)

state: # latent variables (E-step)

x[m,n] : M * N[m] -> X # supertopics (defines dimension X)

y[m,n] : M * N[m] -> Y # subtopic (defines dimension Y)

est: # estimated parameters (M-step)

thetar : M * X # document-supertopic level 1

theta : M * X * Y # supertopic-subtopic level 2

phi : Y * V # subtopic-term level 3

alphar : 1 # level 1 hparam (scalar)

alpha : X * Y # level 2 hparam (with grouping)

beta : 1 # level 3 hparam (scalar)

network: # format: parent_values >>

# param[g(pav,i)] | hparam[f(pav)]

# >> child_edge[sequence] = value

m >> thetar[m] | alphar >> x[m,n] = x

x >> theta[m,x] | alpha[x] >> y[m,n] = k

k >> phi[k] | beta >> w[m,n]

Fig. 4. Commented mixture network script for 4-level PAM.

and allows two modes of operation: (a) The generator can create an instance of a Java-
based Gibbs sampling class directly from the model script, e.g., for model validation
purposes, and: (b) Based on a set of code templates, it generates C source code of the
Gibbs sampler kernels that can then be further optimised and integrated with other code
before it is compiled for the native computing platform.

In both cases, the generator applies the results of Sec. 4 to the information parsed
from the script, creating Gibbs sampling algorithms as outlined in Fig. 5. Across dif-
ferent MN models, the design follows a stochastic EM approach that after initialisation
loops over alternating sampling (E) and hyperparameter estimation (M) steps until con-
vergence, after which samples can be drawn from the posterior. Important data struc-
tures in the generated code include the Markov state H, its count statistics as well as the
arrays for multinomial sampling from the full conditional. The main computation ker-
nels are those for full conditionals, Eq. 12 (including filling of the multinomial masses
of p(hd

i |·)), for parameter estimation, Eqs. 14–16, as well as for convergence monitor-
ing, which is described below. Currently, in addition to standard Dirichlet–multinomial
nodes models can include observed nodes and parameters but are restricted to a single
token sequence, which excludes aggregation as in the LDCC example.

Convergence monitoring and model quality. Gibbs sampling and other MCMC meth-
ods pose the general problem to determine when their Markov chain reaches a stationary
state that allows to sample from the posterior distribution. With standard convergence
diagnostics [29] difficult to apply to the high-dimensional discrete problem at hand, an
alternative approach is to use some measure of model quality that reaches an optimum
at convergence. Because of its generalisability and frequent use of similar approaches
in topic model evaluation, the likelihood of test data given the trained model M (as
defined in Sec. 4.3) has been chosen as quality measure, whose generalisation can be
outlined as follows:



13

Algorithm mixnetGibbs(V,V ′)
Input: training and test observations V,V ′
Global data: level-specific dimensions KH = {K`}`∈H , T H = {T `}`∈H , selection functions f and g, count

statistics N` = [{~nk}Kk=1]` , N` ∈ N and their sums Σ` = [{∑x nk,t}Kk=1]` , Σ` ∈ Σ for each node
with hidden parameters, memory for full conditional array p(hd

i |·), likelihood L
Output: topic associations H, parameters Θ and hyperparameters A
// initialise
for all nodes ` in topological order do

random initialise hidden sequences h`i ∼ Mult(1/T `), update counts N` and Σ`

// Gibbs EM over burn-in period and sampling period
while not (converged and R samples taken) do

// stochastic E step to sample collapsed state

for all dependency groups Hd ⊆ H do
for all joint tokens hd

i ∈ Hd do
decrement counts Nd and sums Σd according to current state hd

i
assemble array for p(hd

i |Hd
¬i,H

¬d ,V) acc. to Eq. 12
sample new state hd

i ∼ p(hd
i |Hd

¬i,H
¬d ,V)

increment counts Nd and sums Σd according to changed state hd
i

// M step to estimate parameters
for all nodes ` do

update hyperparameters A` acc. to Eqs. 14 and 15

for all nodes ` do
find parameters Θ` according to Eq. 16

// monitor convergence using test data likelihood
L ← call testLik(Θ, A,V ′) using Eqs. 16–18
if L converged and L sampling iterations since last read out then

// different parameter read outs are averaged

Θ̄← Θ̄ + Θ

// Complete parameter average

Θ = Θ̄/R

Fig. 5. Generic Gibbs sampling algorithm.

– For each sequence node of the network, the hidden state H′ is trained on test data
V ′ = {v′i}i according to Eq. 17, resulting in predictive parameters Θ′ = {Θ′`}`.

– For each test-data token v′i , the likelihood given parameters {Θ′, Θ∗} is calculated:

p(v′i |Θ′, Θ∗) =
∑

h′i

∏

`∈L

[
ϑk,t

][`] (18)

where the sum over h′i refers to marginalisation of all hidden variables. To calculate
Eq. 18 efficiently, the mixture network is traversed level by level according to its
generative process, multiplying the respective level parameters (elements of Θ′` or
Θ∗`) and summing over values of latent variables h′i

` not indexing components k`

of child levels. Further, duplicate v′i have identical likelihood.
– The log likelihood of held-out test documents is accumulated from the token like-

lihoods: L(V ′) =
∑

i log p(v′i |Θ′, Θ∗).
As a variant, the test-set likelihoodL(V ′) can be exponentiated and normalised with the
number of tokens in the test data W ′ to obtain the perplexity: P(V ′) = exp(−L(V ′)/W ′),
i.e., the inverse geometric mean of the token likelihoods. Both L(V ′) and P(V ′) are
measures of how well a model is able to explain unseen data. Specifically, perplexity
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can be intuitively interpreted as the expected size of a vocabulary with uniform word
distribution that the model would need to generate a token of the test data. A model that
better captures co-occurrences in the data requires fewer possibilities to choose tokens
given their context (document etc.). Due to the stochastic nature of the states H and H′,
values ofL(V ′) and P(V ′) are not strictly monotonic over iterations. Thus, convergence
of their moving-average process is used as indicator of Markov chain stationarity.

5.2 Validation

At this point, the focus of validation was on algorithms generated for a single-processor
PC architecture, providing a basis for future investigation of specific high-performance
architectures. In order to validate the implementation taken, generated and manually de-
veloped mixture network Gibbs samplers have been compared, including the examples
LDA, ATM and PAM from Fig. 2 as well as several other models with two and three
dependent hidden variables that handle labelled texts. Beside verification of the gener-
ated kernels, the code has been tested on the NIPS1-122 and Reuters-215783 data sets
that in addition to text contain label information (authors, categories). Temporal per-
formance achieved with the generated C-based algorithms came close to the respective
manual implementations (∆t< 2.5%). With equal seeds for random number generators,
numerical behaviour turned out to be identical, considering Θ, A and P(V ′). Validation
results are presented in further detail in a technical report [30].

6 Conclusions

We have presented a generic approach to topic models that covers a broad range of
models in the literature. From their general characteristics, we have developed a repre-
sentation of topic models as “mixture networks” along with a domain-specific graphical
representation that complements Bayesian networks. Based on the mixture network rep-
resentation, Gibbs sampling full conditionals were derived, which resulted in a generic
Gibbs sampling algorithm and a “meta-Gibbs sampler” implementation based on code
generation for specific models.

Future work can depart from these results in various directions. Extensions like
the ones listed in Sec. 2 are desirable to widen the scope of the the mixture network
approach, e.g., towards non-discrete observations as in the Corr-LDA model [6] and
infinite mixtures with Dirichlet process priors [16]. Furthermore, the generic approach
for Gibbs sampling may be applied analogously to collapsed variational Bayes [20].

The foremost research direction is, however, related to the actual motivation of this
article discussed in the Introduction: to extend the code generation to high-performance
computing architectures to help tackle the scalability issues common with topic mod-
els. The vision of this is a high-level language as a user front-end for implementations
with optimised computing kernels. In addition to targeting computing platforms, im-
provements may be gained from heuristics like the statistically motivated acceleration
of multinomial samplers proposed in [31], especially for the large sampling spaces of
dependent latent variables.

2
http://www.cs.toronto.edu/˜roweis/data.html.

3
http://www.daviddlewis.com/resources/testcollections/reuters21578/.

http://www.cs.toronto.edu/~roweis/data.html
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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